IniziaInizia gratis

Combining test dataset results

Evaluating your model's performance on the test dataset gives insights into how well your model predicts on new data sources. These insights will help you communicate your model's value in solving problems or improving decision making.

Before you can calculate classification metrics such as sensitivity or specificity, you must create a results tibble with the required columns for yardstick metric functions.

In this exercise, you will use your trained model to predict the outcome variable in the telecom_test dataset and combine it with the true outcome values in the canceled_service column.

Your trained model, logistic_fit, and test dataset, telecom_test, have been loaded from the previous exercise.

Questo esercizio fa parte del corso

Modeling with tidymodels in R

Visualizza il corso

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Predict outcome categories
class_preds <- predict(___, new_data = ___,
                       type = ___)
Modifica ed esegui il codice