IniziaInizia gratis

Model training

Next, you will estimate a logistic response model on train.data. Therefore, you use the predictor variables that remained after model selection to explain the purchase probabilities for HOPPINESS. You investigate the train.model and compare the results to the previously fitted extended.model by using the function margins().

Questo esercizio fa parte del corso

Building Response Models in R

Visualizza il corso

Istruzioni dell'esercizio

  • Estimate a logistic response model on train.data. Explain HOPPINESS by price.ratio, FEAT.HOP, and FEATDISPL.HOP. Use the function glm() with the family argument binomial and assign the result to an object named train.model.
  • Investigate the train.model object by using the function margins().
  • Investigate the extended.model object by using the function margins().

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Fit the logistic response model to train.data
___ <- glm(___, family = binomial, data = ___)

# Investigate the train.model
___

# Investigate the extended.model
___
Modifica ed esegui il codice