Scaling II
You'll now apply a scaler to the dataset, which is available for you as environment
.
Remember that Scaling helps the algorithm converge faster, and avoids having one dominant feature heavily influence the outcomes.
Cet exercice fait partie du cours
Analyzing IoT Data in Python
Instructions
- Initialize a
StandardScaler
and store it assc
. - Fit the scaler to
environment
. - Scale
environment
and store the result asenviron_scaled
. - Convert the scaled data back to a DataFrame, using the same columns and index than the original DataFrame.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Initialize StandardScaler
sc = ____()
# Fit the scaler
sc.fit(____)
# Transform the data
environ_scaled = ____.____(____)
# Convert scaled data to DataFrame
environ_scaled = pd.DataFrame(____,
columns=____,
index=____)
print(environ_scaled.head())
plot_unscaled_scaled(environment, environ_scaled)