CommencerCommencer gratuitement

Store Pipeline

You'll now create the Pipeline again, but directly, skipping the step of initializing the StandardScaler and LogisticRegression as a variable. Instead, you will do the initialization as part of the Pipeline creation.

You'll then store the model for further use.

The data is available as X_train, with the labels as y_train.

StandardScaler, LogisticRegression and Pipeline have been imported for you.

Cet exercice fait partie du cours

Analyzing IoT Data in Python

Afficher le cours

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Create Pipeline
pl = Pipeline([
        ("scale", ____),
        ("logreg", ____)
    ])

# Fit the pipeline
____.____(____, ____)
Modifier et exécuter le code