LoslegenKostenlos loslegen

Compare annual stock price trends

In the video, you have seen how to select sub-periods from a time series.

You'll use this to compare the performance for three years of Yahoo stock prices.

Diese Übung ist Teil des Kurses

Manipulating Time Series Data in Python

Kurs anzeigen

Anleitung zur Übung

We have already imported pandas as pd and matplotlib.pyplot as plt and we have already loaded the 'yahoo.csv' file in a variable yahoo with DateTimeIndex and a single column price.

  • Create an empty pd.DataFrame() called prices.
  • Iterate over a list containing the three years, 2013, 2014, and 2015, as string, and in each loop:
    • Use the iteration variable to select the data for this year and the column price.
    • Use .reset_index() with drop=True to remove the DatetimeIndex.
    • Rename the column price column to the appropriate year.
    • Use pd.concat() to combine the yearly data with the data in prices along axis=1.
  • Plot prices.

Interaktive Übung

Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.

# Create dataframe prices here
prices = ____

# Select data for each year and concatenate with prices here 
for year in [___, ___, ___]:
    price_per_year = yahoo.loc[___, [___]].reset_index(drop=True)
    price_per_year.rename(columns={___: year}, inplace=True)
    prices = pd.concat([prices, ___], axis=1)

# Plot prices

Code bearbeiten und ausführen