Parameter estimates of difference between finals and semifinals
Compute the mean fractional improvement from the semifinals to finals, along with a 95% confidence interval of the mean. The NumPy array f
that you computed in the last exercise is in your namespace.
Diese Übung ist Teil des Kurses
Case Studies in Statistical Thinking
Anleitung zur Übung
- Compute the mean of
f
, storing the result inf_mean
. - Generate 10,000 bootstrap replicates of the mean of
f
. Store the results inbs_reps
. - Compute a 95% confidence interval from these bootstrap replicates.
- Hit 'Submit Answer' to print the mean and confidence interval to the screen.
Interaktive Übung
Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.
# Mean fractional time difference: f_mean
f_mean = ____
# Get bootstrap reps of mean: bs_reps
bs_reps = ____
# Compute confidence intervals: conf_int
conf_int = ____
# Report
print("""
mean frac. diff.: {0:.5f}
95% conf int of mean frac. diff.: [{1:.5f}, {2:.5f}]""".format(f_mean, *conf_int))