BaşlayınÜcretsiz Başlayın

Comparing model performance profiles

The benefit of the collect_metrics() function is that it returns a tibble of cross validation results. This makes it easy to calculate custom summary statistics with the dplyr package.

In this exercise, you will use dplyr to explore the cross validation results of your decision tree and logistic regression models.

Your cross validation results, loans_dt_rs and loans_logistic_rs have been loaded into your session.

Bu egzersiz

Modeling with tidymodels in R

kursunun bir parçasıdır
Kursu Görüntüle

Uygulamalı interaktif egzersiz

Bu örnek kodu tamamlayarak bu egzersizi bitirin.

# Detailed cross validation results
dt_rs_results <- ___ %>% 
  collect_metrics(___)

# Explore model performance for decision tree
dt_rs_results %>% 
  group_by(___) %>% 
  summarize(min = ___,
            median = ___,
            max = ___)
Kodu Düzenle ve Çalıştır