BaşlayınÜcretsiz Başlayın

Model performance metrics

In this exercise, you will use yardstick metric functions to evaluate your model's performance on the test dataset.

When you fit a logistic regression model to the telecommunications data in Chapter 2, you predicted canceled_service using avg_call_mins, avg_intl_mins, and monthly_charges. The sensitivity of your model was 0.42 while the specificity was 0.895.

Now that you have incorporated all available predictor variables using feature engineering, you can compare your new model's performance to your previous results.

Your model results, telecom_results, have been loaded into your session.

Bu egzersiz

Modeling with tidymodels in R

kursunun bir parçasıdır
Kursu Görüntüle

Uygulamalı interaktif egzersiz

Bu örnek kodu tamamlayarak bu egzersizi bitirin.

# Create a confusion matrix
telecom_results %>% 
  ___(truth = ___, estimate = ___)
Kodu Düzenle ve Çalıştır