Multivariate linear regression (Part 2)
Now you will make predictions using the blood pressure model bloodpressure_model that you fit in the previous exercise. 
You will also compare the predictions to outcomes graphically. ggplot2 has already been loaded. Recall the plot command takes the form:
ggplot(dframe, aes(x = pred, y = outcome)) + 
     geom_point() + 
     geom_abline(color = "blue")
bloodpressure and bloodpressure_model are available for you to use.
Este exercício faz parte do curso
Supervised Learning in R: Regression
Instruções do exercício
- Use predict()to predict blood pressure in thebloodpressuredataset. Assign the predictions to the columnprediction.
- Graphically compare the predictions to actual blood pressures. Put predictions on the x axis. How close are the results to the line of perfect prediction?
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
# bloodpressure is available
summary(bloodpressure)
# bloodpressure_model is available
bloodpressure_model
# Predict blood pressure using bloodpressure_model: prediction
bloodpressure$prediction <- ___
# Plot the results
___ + 
    ___ +
    geom_abline(color = "blue")