Random forest model
In this exercise, you will use the randomForest() function in the randomForest package to build a random forest model for predicting churn of the customers in the training data set, training_set. The target variable is called Future.
You will also inspect and visualize the importance of the variables in the model.
Este exercício faz parte do curso
Predictive Analytics using Networked Data in R
Instruções do exercício
- Load the
randomForestpackage. - Use the
set.seed()function with the seed 863. - Build a random forest using the function
randomForest()and all the variables intraining_set. The response variableFutureneeds to be a factor, so utilize theas.factor()function. - Plot the variable importance of the random forest model using
varImpPlot().
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
# Load package
___(randomForest)
# Set seed
set.seed(___)
# Build model
rfModel <- ___(as.factor(___)~. ,data=training_set)
# Plot variable importance
varImpPlot(___)