Handle missing values
In order to replace missing values in your time series data, you can use the command:
df = df.fillna(method="ffill")
where the argument specifies the type of method you want to use. For example, specifying bfill (i.e backfilling) will ensure that missing values are replaced using the next valid observation, while ffill (i.e. forward-filling) ensures that missing values are replaced using the last valid observation.
Recall from the previous exercise that co2_levels has 59 missing values.
Deze oefening maakt deel uit van de cursus
Visualizing Time Series Data in Python
Oefeninstructies
- Impute these missing values in
co2_levelsby using backfilling. - Print the total number of missing values.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Impute missing values with the next valid observation
co2_levels = co2_levels.____(method=____)
# Print out the number of missing values
____(____.____())