Nabular data and summarising by missingness
In this exercise, we are going to explore how to use nabular data to explore the variation in a variable by the missingness of another.
We are going to use the oceanbuoys dataset from naniar, and then create multiple plots of the data using facets.
This allows you to explore different layers of missingness.
Deze oefening maakt deel uit van de cursus
Dealing With Missing Data in R
Oefeninstructies
- Explore the distribution of wind east west (
wind_ew) for the missingness of air temperature usinggeom_density()and faceting by the missingness of air temperature (air_temp_c_NA). - Build upon this visualization by filling by the missingness of humidity (
humidity_NA).
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Explore the distribution of wind east west (wind_ew) for the missingness of air temperature
# using geom_density() and faceting by the missingness of air temperature (air_temp_c_NA).
___ %>%
bind_shadow(___) %>%
ggplot(aes(x = ___)) +
geom_density() +
facet_wrap(~___)
# Build upon this visualization by coloring by the missingness of humidity (humidity_NA).
___ %>%
___(___) %>%
ggplot(aes(x = ___,
color = ___)) +
geom_density() +
___(~___)