Faceting to explore missingness (multiple plots)
Another useful technique with geommisspoint() is to explore the missingness by creating multiple plots.
Just as we have done in the previous exercises, we can use the nabular data to help us create additional faceted plots.
We can even create multiple faceted plots according to values in the data, such as year, and features of the data, such as missingness.
Deze oefening maakt deel uit van de cursus
Dealing With Missing Data in R
Oefeninstructies
- Use
geom_miss_point()andfacet_wrap()to explore how the missingness inwind_ewandair_temp_cis different for missingness ofhumidity. - Use
geom_miss_point()andfacet_grid()to explore how the missingness inwind_ewandair_temp_cis different for missingness ofhumidityand byyear.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Use geom_miss_point() and facet_wrap to explore how the missingness
# in wind_ew and air_temp_c is different for missingness of humidity
bind_shadow(oceanbuoys) %>%
ggplot(aes(x = ___,
y = ___)) +
geom_miss_point() +
facet_wrap(~___)
# Use geom_miss_point() and facet_grid to explore how the missingness in wind_ew and air_temp_c
# is different for missingness of humidity AND by year - by using `facet_grid(humidity_NA ~ year)`
bind_shadow(oceanbuoys) %>%
ggplot(aes(x = ___,
y = ___)) +
geom_miss_point() +
facet_grid(humidity_NA~year)