Aan de slagGa gratis aan de slag

Further exploring more combinations of missingness

It can be useful to get a bit of extra information about the number of cases in each missing condition.

In this exercise, we are going to add information about the number of observed cases using n() inside the summarize() function.

We will then add an additional level of grouping by looking at the combination of humidity being missing (humidity_NA) and air temperature being missing (air_temp_c_NA).

Deze oefening maakt deel uit van de cursus

Dealing With Missing Data in R

Cursus bekijken

Oefeninstructies

Using group_by() and summarize() on wind_ew:

  • Summarize by the missingness of air_temp_c_NA.
  • Summarize by missingness of air_temp_c_NA and humidity_NA.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Summarize wind_ew by the missingness of `air_temp_c_NA`
oceanbuoys %>% 
  bind_shadow() %>%
  group_by(___) %>%
  summarize(wind_ew_mean = mean(___),
            wind_ew_sd = sd(___),
            n_obs = ___)

# Summarize wind_ew by missingness of `air_temp_c_NA` and `humidity_NA`
oceanbuoys %>% 
  bind_shadow() %>%
  group_by(___, ___) %>%
  summarize(wind_ew_mean = mean(___),
            wind_ew_sd = sd(___),
            n_obs = ___)
Code bewerken en uitvoeren