Aan de slagGa gratis aan de slag

Evaluating the different parameters in the model

We are imputing our data for a reason - we want to analyze the data!

In this example, we are interested in predicting sea temperature, so we will build a linear model predicting sea temperature.

We will fit this model to each of the datasets we created and then explore the coefficients in the data.

The objects from the previous lesson (ocean_cc, ocean_imp_lm_wind, ocean_imp_lm_all, and bound_models) are loaded into the workspace.

Deze oefening maakt deel uit van de cursus

Dealing With Missing Data in R

Cursus bekijken

Oefeninstructies

  • Create the model summary for each dataset with columns for residuals using residuals, predict, and tidy.
  • Explore the coefficients in the model and put the model with the highest estimate for air_temp_c in the object best_model

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Create the model summary for each dataset
model_summary <- bound_models %>% 
  group_by(imp_model) %>%
  nest() %>%
  mutate(mod = map(data, ~lm(sea_temp_c ~ air_temp_c + humidity + year, data = .)),
         res = map(mod, ___),
         pred = map(mod, ___),
         tidy = map(mod, ___))

# Explore the coefficients in the model
model_summary %>% 
	select(___,___) %>% 
	unnest()
best_model <- "___"
Code bewerken en uitvoeren