Aan de slagGa gratis aan de slag

A logistic model for beer demand

The linear model does not fit the data when it comes to predicting purchase probabilities. You need a response function that bounds the model predictions between zero and one.

The logistic response function can do this job for you. Therefore, you will need the function glm(). The function glm() works very similar to the lm() function. The main difference is the additional family argument. As HOPPINESS is a binary variable, you have to specify the family argument as binomial.

Deze oefening maakt deel uit van de cursus

Building Response Models in R

Cursus bekijken

Oefeninstructies

  • Explain HOPPINESS by price.ratio using the function glm() and the argument family = binomial. Assign the result to an object named logistic.model.
  • Obtain the coefficients of the logistic.model by using the function coef().

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Explain HOPPINESS by price.ratio
___ <- ___(___, family = ___, data = choice.data)

# Obtain the coefficients
Code bewerken en uitvoeren