Generating and plotting geometric distributions
In sports it is common for players to make multiple attempts to score points for themselves or their teams. Each single attempt can have two possible outcomes, scoring or not scoring. Those situations can be modeled with geometric distributions. With scipy.stats you can generate samples using the rvs() function for each distribution.
Consider the previous example of a basketball player who scores free throws with a probability of 0.3. Generate a sample, and plot it.
numpy has been imported for you with the standard alias np.
Questo esercizio fa parte del corso
Foundations of Probability in Python
Istruzioni dell'esercizio
- Import
geomfromscipy.stats,matplotlib.pyplotasplt, andseabornassns. - Generate a sample with
size=10000from a geometric distribution with a probability of success of 0.3. - Plot the sample generated.
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
# Import geom, matplotlib.pyplot, and seaborn
from ____
import ____
import ____
# Create the sample
sample = ____.____(p=____, size=10000, random_state=13)
# Plot the sample
sns.____(sample, bins = np.linspace(0,20,21), kde=False)
plt.show()