CommencerCommencer gratuitement

Modifier le rapport avec include et echo

Les exercices du cours ont utilisé include = FALSE pour empêcher le code et les résultats des blocs setup et data d’apparaître dans le rapport tricoté. Même si vous ne modifierez pas ces options — puisque le code et les résultats de ces blocs doivent être exclus du rapport — il est important de comprendre leur impact sur le rapport final.

Dans cet exercice, vous allez utiliser l’option echo pour décider si le code apparaît ou non dans le rapport.

Cet exercice fait partie du cours

Créer des rapports avec R Markdown

Afficher le cours

Instructions

  • En utilisant echo, ajoutez aux options globales des blocs de code du rapport afin d’exclure l’affichage du code de tous les blocs dans le rapport tricoté.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

{"investment_report.Rmd":"---\ntitle: \"Investment Report\"\ndate: \"`r format(Sys.time(), '%d %B %Y')`\"\noutput: html_document\n---\n\n```{r setup, include = FALSE}\nknitr::opts_chunk$set(fig.align = 'center')\n```\n\n```{r data, include = FALSE}\nlibrary(readr)\nlibrary(dplyr)\nlibrary(ggplot2)\nlibrary(knitr)\n\ninvestment_annual_summary <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/d0251f26117bbcf0ea96ac276555b9003f4f7372/investment_annual_summary.csv\")\ninvestment_region_summary <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/52f5414f6504e0503e86eb1043afa9b3d157fab2/investment_region_summary.csv\")\ninvestment_services_projects <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/bcb2e39ecbe521f4b414a21e35f7b8b5c50aec64/investment_services_projects.csv\")\n```\n\n\n## Datasets \n### Investment Annual Summary\nThe `investment_annual_summary` dataset provides a summary of the dollars in millions provided to each of the following regions for each fiscal year, from 2012 to 2018:\n\n1. East Asia and the Pacific      \n2. Europe and Central Asia        \n3. Latin America and the Caribbean\n4. Middle East and North Africa   \n5. South Asia                     \n6. Sub-Saharan Africa\n\n```{r investment-annual-summary, out.width = '85%', fig.cap = 'Figure 1.1 The Investment Annual Summary for each region for 2012 to 2018.'}\nggplot(investment_annual_summary, aes(x = fiscal_year, y = dollars_in_millions, color = region)) +\n  geom_line() +\n  labs(\n    title = \"Investment Annual Summary\",\n    x = \"Fiscal Year\",\n    y = \"Dollars in Millions\"\n  )\n```\n\n```{r tables}\nkable(investment_region_summary, col.names = c(\"Region\", \"Dollars in Millions\"), align = \"cc\", caption = \"Table 1.1 The total investment summary for each region for the 2012 to 2018 fiscal years.\")\n```\n\n### Investment Projects in Brazil\nThe `investment_services_projects` dataset provides information about each investment project from 2012 to 2018. Information listed includes the project name, company name, sector, project status, and investment amounts.\n\n```{r brazil-investment-projects, out.width = '95%', fig.cap = 'Figure 1.2 The Investment Services Projects in Brazil from 2012 to 2018.'}\nbrazil_investment_projects <- investment_services_projects %>%\n  filter(country == \"Brazil\") \n\nggplot(brazil_investment_projects, aes(x = date_disclosed, y = total_investment, color = status)) +\n  geom_point() +\n  labs(\n    title = \"Investment Services Projects in Brazil\",\n    x = \"Date Disclosed\",\n    y = \"Total IFC Investment in Dollars in Millions\"\n  )\n```\n\n### Investment Projects in Brazil in 2018\nThe `investment_services_projects` dataset was filtered below to focus on information about each investment project from the 2018 fiscal year, and is referred to as `brazil_investment_projects_2018`. \n\n```{r brazil-investment-projects-2018, out.width = '95%', fig.cap = 'Figure 1.3 The Investment Services Projects in Brazil in 2018.'}\nbrazil_investment_projects_2018 <- investment_services_projects %>%\n  filter(country == \"Brazil\",\n         date_disclosed >= \"2017-07-01\",\n         date_disclosed <= \"2018-06-30\") \n\nggplot(brazil_investment_projects_2018, aes(x = date_disclosed, y = total_investment, color = status)) +\n  geom_point() +\n  labs(\n    title = \"Investment Services Projects in Brazil in 2018\",\n    x = \"Date Disclosed\",\n    y = \"Total IFC Investment in Dollars in Millions\"\n  ) \n```\n\n\n"}
Modifier et exécuter le code