CommencerCommencer gratuitement

Visualiser tous les projets pour un pays et une année

Vous allez maintenant créer un graphique en courbes à partir des données filtrées pour tous les projets survenus au Brésil durant l’exercice fiscal 2018. Dans les exercices précédents, les libellés vous étaient fournis. En construisant ce graphique, vous allez vous entraîner à ajouter vos propres libellés, qui apparaîtront lorsque vous compilerez le rapport.

Cet exercice fait partie du cours

Créer des rapports avec R Markdown

Afficher le cours

Instructions

  • Dans le bloc de code brazil-investment-projects-2018, créez un nuage de points à partir des données brazil_investment_projects_2018.
  • Ajoutez le titre "Investment Services Projects in Brazil in 2018" au graphique.
  • Indiquez l’axe des x comme "Date Disclosed" et l’axe des y comme "Total IFC Investment in Dollars in Millions".

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

{"investment_report.Rmd":"---\ntitle: \"Investment Report\"\ndate: \"`r format(Sys.time(), '%d %B %Y')`\"\noutput: html_document\n---\n\n```{r data, include = FALSE}\nlibrary(readr)\nlibrary(dplyr)\nlibrary(ggplot2)\n\ninvestment_annual_summary <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/d0251f26117bbcf0ea96ac276555b9003f4f7372/investment_annual_summary.csv\")\ninvestment_services_projects <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/bcb2e39ecbe521f4b414a21e35f7b8b5c50aec64/investment_services_projects.csv\")\n```\n\n\n## Datasets \n\n### Investment Annual Summary\n\nThe `investment_annual_summary` dataset provides a summary of the dollars in millions provided to each region for each fiscal year, from 2012 to 2018.\n```{r investment-annual-summary}\nggplot(investment_annual_summary, aes(x = fiscal_year, y = dollars_in_millions, color = region)) +\n  geom_line() +\n  labs(\n    title = \"Investment Annual Summary\",\n    x = \"Fiscal Year\",\n    y = \"Dollars in Millions\"\n  )\n```\n\n### Investment Projects in Brazil\n\nThe `investment_services_projects` dataset provides information about each investment project from 2012 to 2018. Information listed includes the project name, company name, sector, project status, and investment amounts.\n```{r brazil-investment-projects}\nbrazil_investment_projects <- investment_services_projects %>%\n  filter(country == \"Brazil\") \n\nggplot(brazil_investment_projects, aes(x = date_disclosed, y = total_investment, color = status)) +\n  geom_point() +\n  labs(\n    title = \"Investment Services Projects in Brazil\",\n    x = \"Date Disclosed\",\n    y = \"Total IFC Investment in Dollars in Millions\"\n  )\n```\n\n### Investment Projects in Brazil in 2018\n\n```{r brazil-investment-projects-2018}\nbrazil_investment_projects_2018 <- investment_services_projects %>%\n  filter(country == \"Brazil\",\n         date_disclosed >= \"2017-07-01\",\n         date_disclosed <= \"2018-06-30\") \n\nggplot(___, aes(x = date_disclosed, y = total_investment, color = status)) +\n  geom_point() +\n  labs(\n    title = ___,\n    x = ___,\n    y = ___\n  ) \n```\n\n\n"}
Modifier et exécuter le code