Créer un nouveau rapport à l’aide d’un paramètre
Maintenant que vous avez ajouté un paramètre au document, vous allez créer un nouveau rapport pour le Bangladesh à partir des données investment_services_projects en utilisant le paramètre country.
Avant de « tricoter » le rapport, vous allez relire et modifier le texte du document pour vous assurer que le rapport généré reflète bien le pays indiqué dans le paramètre.
Cet exercice fait partie du cours
Créer des rapports avec R Markdown
Instructions
- Remplacez
Brazildans les en-têtes du document par une référence au paramètrecountry. - Ajoutez le paramètre
countryau champ de titre"Investment Report"de l’en-tête YAML afin qu’une fois le fichier tricoté (knit), le titre du rapport s’affiche comme « Investment Report for Projects in Bangladesh ». - En utilisant le paramètre
country, créez un nouveau fichier de rapport d’investissement pour le Bangladesh.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
{"investment_report.Rmd":"---\ntitle: \"Investment Report\"\noutput: \n html_document:\n toc: true\n toc_float: true\ndate: \"`r format(Sys.time(), '%d %B %Y')`\"\nparams:\n country: Brazil \n---\n\n```{r setup, include = FALSE}\nknitr::opts_chunk$set(fig.align = 'center', echo = TRUE)\n```\n\n```{r data, include = FALSE}\nlibrary(readr)\nlibrary(dplyr)\nlibrary(ggplot2)\n\ninvestment_annual_summary <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/d0251f26117bbcf0ea96ac276555b9003f4f7372/investment_annual_summary.csv\")\ninvestment_services_projects <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/bcb2e39ecbe521f4b414a21e35f7b8b5c50aec64/investment_services_projects.csv\")\n```\n\n## Datasets \n\n### Investment Annual Summary\nThe `investment_annual_summary` dataset provides a summary of the dollars in millions provided to each region for each fiscal year, from 2012 to 2018.\n```{r investment-annual-summary}\nggplot(investment_annual_summary, aes(x = fiscal_year, y = dollars_in_millions, color = region)) +\n geom_line() +\n labs(\n title = \"Investment Annual Summary\",\n x = \"Fiscal Year\",\n y = \"Dollars in Millions\"\n )\n```\n\n### Investment Projects in Brazil\nThe `investment_services_projects` dataset provides information about each investment project from 2012 to 2018. Information listed includes the project name, company name, sector, project status, and investment amounts. Projects that do not have an associated investment amount are excluded from the plot.\n\n```{r country-investment-projects}\ncountry_investment_projects <- investment_services_projects %>%\n filter(country == params$country) \n\nggplot(country_investment_projects, aes(x = date_disclosed, y = total_investment, color = status)) +\n geom_point() +\n labs(\n title = \"Investment Services Projects\",\n x = \"Date Disclosed\",\n y = \"Total IFC Investment in Dollars in Millions\"\n )\n```\n\n### Investment Projects in Brazil in 2018\nThe `investment_services_projects` dataset was filtered below to focus on information about each investment project from the 2018 fiscal year, and is referred to as `country_investment_projects_2018`. Projects that do not have an associated investment amount are excluded from the plot.\n```{r country-investment-projects-2018}\ncountry_investment_projects_2018 <- investment_services_projects %>%\n filter(country == params$country,\n date_disclosed >= \"2017-07-01\",\n date_disclosed <= \"2018-06-30\")\n\nggplot(country_investment_projects_2018, aes(x = date_disclosed, y = total_investment, color = status)) +\n geom_point() +\n labs(\n title = \"Investment Services Projects in 2018\",\n x = \"Date Disclosed\",\n y = \"Total IFC Investment in Dollars in Millions\"\n ) \n```\n\n\n"}