Personnaliser le style du rapport
Maintenant que vous avez appris à personnaliser le style de votre rapport, vous allez commencer à ajouter des polices et des couleurs spécifiques à votre rapport existant.
Cet exercice fait partie du cours
Créer des rapports avec R Markdown
Instructions
- Entre les balises
<style>et</style>, ajoutezbodyavec des accolades pour modifier l’arrière-plan du document etpreavec des accolades pour modifier les blocs de code. - Dans les accolades de
body, ajoutez#708090pour la couleur du texte aveccolor,Calibripourfont-family, et#F5F5F5pour lebackground-color. - Dans les accolades de
pre, indiquez#708090pourcolor, et#F8F8FFpour lebackground-color.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
{"investment_report.Rmd":"---\ntitle: \"Investment Report for Projects in `r params$country`\"\noutput: \n html_document:\n toc: true\n toc_float: true\ndate: \"`r format(Sys.time(), '%d %B %Y')`\"\nparams:\n country: Brazil\n year_start: 2017-07-01\n year_end: 2018-06-30\n fy: 2018\n---\n\n\n\n```{r setup, include = FALSE}\nknitr::opts_chunk$set(fig.align = 'center', echo = TRUE)\n```\n\n```{r data, include = FALSE}\nlibrary(readr)\nlibrary(dplyr)\nlibrary(ggplot2)\n\ninvestment_annual_summary <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/d0251f26117bbcf0ea96ac276555b9003f4f7372/investment_annual_summary.csv\")\ninvestment_services_projects <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/bcb2e39ecbe521f4b414a21e35f7b8b5c50aec64/investment_services_projects.csv\")\n```\n\n\n## Datasets \n\n### Investment Annual Summary\nThe `investment_annual_summary` dataset provides a summary of the dollars in millions provided to each region for each fiscal year, from 2012 to 2018.\n```{r investment-annual-summary}\nggplot(investment_annual_summary, aes(x = fiscal_year, y = dollars_in_millions, color = region)) +\n geom_line() +\n labs(\n title = \"Investment Annual Summary\",\n x = \"Fiscal Year\",\n y = \"Dollars in Millions\"\n )\n```\n\n### Investment Projects in `r params$country`\nThe `investment_services_projects` dataset provides information about each investment project from 2012 to 2018. Information listed includes the project name, company name, sector, project status, and investment amounts. Projects that do not have an associated investment amount are excluded from the plot.\n\n```{r country-investment-projects}\ncountry_investment_projects <- investment_services_projects %>%\n filter(country == params$country) \n\nggplot(country_investment_projects, aes(x = date_disclosed, y = total_investment, color = status)) +\n geom_point() +\n labs(\n title = \"Investment Services Projects\",\n x = \"Date Disclosed\",\n y = \"Total IFC Investment in Dollars in Millions\"\n )\n```\n\n### Investment Projects in `r params$country` in `r params$fy`\nThe `investment_services_projects` dataset was filtered below to focus on information about each investment project from the `r params$fy` fiscal year, and is referred to as `country_annual_investment_projects`. Projects that do not have an associated investment amount are excluded from the plot.\n```{r country-annual-investment-projects}\ncountry_annual_investment_projects <- investment_services_projects %>%\n filter(country == params$country,\n date_disclosed >= params$year_start,\n date_disclosed <= params$year_end) \n\nggplot(country_annual_investment_projects, aes(x = date_disclosed, y = total_investment, color = status)) +\n geom_point() +\n labs(\n title = \"Investment Services Projects\",\n x = \"Date Disclosed\",\n y = \"Total IFC Investment in Dollars in Millions\"\n ) \n```\n\n\n"}