CommencerCommencer gratuitement

Créer un nouveau rapport avec plusieurs paramètres

Maintenant que vous avez ajouté des paramètres pour gérer l’exercice fiscal, vous allez créer un nouveau rapport pour un autre pays et un autre exercice fiscal à partir des données investment_services_projects.

Cet exercice fait partie du cours

Créer des rapports avec R Markdown

Afficher le cours

Instructions

  • Remplacez « 2018 » dans l’en-tête à la ligne 59 et dans le texte à la ligne 60 par des références au paramètre d’exercice fiscal.
  • En utilisant le paramètre country, créez un rapport d’investissement pour le Bangladesh.
  • Modifiez les paramètres year_start, year_end et fy afin que le rapport d’investissement que vous créez porte sur les données de l’exercice fiscal 2014.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

{"investment_report.Rmd":"---\ntitle: \"Investment Report for Projects in `r params$country`\"\noutput: \n  html_document:\n    toc: true\n    toc_float: true\ndate: \"`r format(Sys.time(), '%d %B %Y')`\"\nparams:\n  country: Brazil\n  year_start: 2017-07-01\n  year_end: 2018-06-30\n  fy: 2018\n---\n\n```{r setup, include = FALSE}\nknitr::opts_chunk$set(fig.align = 'center', echo = TRUE)\n```\n\n```{r data, include = FALSE}\nlibrary(readr)\nlibrary(dplyr)\nlibrary(ggplot2)\n\ninvestment_annual_summary <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/d0251f26117bbcf0ea96ac276555b9003f4f7372/investment_annual_summary.csv\")\ninvestment_services_projects <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/bcb2e39ecbe521f4b414a21e35f7b8b5c50aec64/investment_services_projects.csv\")\n```\n\n\n## Datasets \n\n### Investment Annual Summary\nThe `investment_annual_summary` dataset provides a summary of the dollars in millions provided to each region for each fiscal year, from 2012 to 2018.\n```{r investment-annual-summary}\nggplot(investment_annual_summary, aes(x = fiscal_year, y = dollars_in_millions, color = region)) +\n  geom_line() +\n  labs(\n    title = \"Investment Annual Summary\",\n    x = \"Fiscal Year\",\n    y = \"Dollars in Millions\"\n  )\n```\n\n### Investment Projects in `r params$country`\nThe `investment_services_projects` dataset provides information about each investment project from 2012 to 2018. Information listed includes the project name, company name, sector, project status, and investment amounts. Projects that do not have an associated investment amount are excluded from the plot.\n\n```{r country-investment-projects}\ncountry_investment_projects <- investment_services_projects %>%\n  filter(country == params$country) \n\nggplot(country_investment_projects, aes(x = date_disclosed, y = total_investment, color = status)) +\n  geom_point() +\n  labs(\n    title = \"Investment Services Projects\",\n    x = \"Date Disclosed\",\n    y = \"Total IFC Investment in Dollars in Millions\"\n  )\n```\n\n### Investment Projects in `r params$country` in 2018\nThe `investment_services_projects` dataset was filtered below to focus on information about each investment project from the 2018 fiscal year, and is referred to as `country_annual_investment_projects`. Projects that do not have an associated investment amount are excluded from the plot.\n```{r country-annual-investment-projects}\ncountry_annual_investment_projects <- investment_services_projects %>%\n  filter(country == params$country,\n         date_disclosed >= params$year_start,\n         date_disclosed <= params$year_end) \n\nggplot(country_annual_investment_projects, aes(x = date_disclosed, y = total_investment, color = status)) +\n  geom_point() +\n  labs(\n    title = \"Investment Services Projects\",\n    x = \"Date Disclosed\",\n    y = \"Total IFC Investment in Dollars in Millions\"\n  ) \n```\n\n\n"}
Modifier et exécuter le code