Personnaliser l’en-tête et la table des matières
Dans cet exercice, vous allez continuer à ajouter des styles en modifiant les sections de la table des matières et de l’en-tête du fichier Markdown.
Cet exercice fait partie du cours
Créer des rapports avec R Markdown
Instructions
- À l’intérieur des balises
<style>et</style>, au-dessus de la sectionbody, ajoutez des sections pour#TOCet#header. - Dans les accolades de
#TOC, ajoutez#708090pour la couleur du texte,Calibripour la police,16pxpour lafont-size, et#708090pour laborder-color. - Dans les accolades de
#header, ajoutez#F08080pour la couleur du texte,#F5F5F5pour l’arrière-plan, uneopacityde0.6,Calibripour la police, et20pxpour lafont-size.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
{"investment_report.Rmd":"---\ntitle: \"Investment Report for Projects in `r params$country`\"\noutput: \n html_document:\n toc: true\n toc_float: true\ndate: \"`r format(Sys.time(), '%d %B %Y')`\"\nparams:\n country: Brazil\n year_start: 2017-07-01\n year_end: 2018-06-30\n fy: 2018\n---\n\n\n\n```{r setup, include = FALSE}\nknitr::opts_chunk$set(fig.align = 'center', echo = TRUE)\n```\n\n```{r data, include = FALSE}\nlibrary(readr)\nlibrary(dplyr)\nlibrary(ggplot2)\n\ninvestment_annual_summary <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/d0251f26117bbcf0ea96ac276555b9003f4f7372/investment_annual_summary.csv\")\ninvestment_services_projects <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/bcb2e39ecbe521f4b414a21e35f7b8b5c50aec64/investment_services_projects.csv\")\n```\n\n\n## Datasets \n\n### Investment Annual Summary\nThe `investment_annual_summary` dataset provides a summary of the dollars in millions provided to each region for each fiscal year, from 2012 to 2018.\n```{r investment-annual-summary}\nggplot(investment_annual_summary, aes(x = fiscal_year, y = dollars_in_millions, color = region)) +\n geom_line() +\n labs(\n title = \"Investment Annual Summary\",\n x = \"Fiscal Year\",\n y = \"Dollars in Millions\"\n )\n```\n\n### Investment Projects in `r params$country`\nThe `investment_services_projects` dataset provides information about each investment project from 2012 to 2018. Information listed includes the project name, company name, sector, project status, and investment amounts. Projects that do not have an associated investment amount are excluded from the plot.\n\n```{r country-investment-projects}\ncountry_investment_projects <- investment_services_projects %>%\n filter(country == params$country) \n\nggplot(country_investment_projects, aes(x = date_disclosed, y = total_investment, color = status)) +\n geom_point() +\n labs(\n title = \"Investment Services Projects\",\n x = \"Date Disclosed\",\n y = \"Total IFC Investment in Dollars in Millions\"\n )\n```\n\n### Investment Projects in `r params$country` in `r params$fy`\nThe `investment_services_projects` dataset was filtered below to focus on information about each investment project from the `r params$fy` fiscal year, and is referred to as `country_annual_investment_projects`. Projects that do not have an associated investment amount are excluded from the plot.\n```{r country-annual-investment-projects}\ncountry_annual_investment_projects <- investment_services_projects %>%\n filter(country == params$country,\n date_disclosed >= params$year_start,\n date_disclosed <= params$year_end) \n\nggplot(country_annual_investment_projects, aes(x = date_disclosed, y = total_investment, color = status)) +\n geom_point() +\n labs(\n title = \"Investment Services Projects\",\n x = \"Date Disclosed\",\n y = \"Total IFC Investment in Dollars in Millions\"\n ) \n```\n\n\n"}