CommencerCommencer gratuitement

Customizing the header and table of contents

In this exercise, you'll continue to add styles by modifying the table of contents and header sections of the Markdown file.

Cet exercice fait partie du cours

Reporting with R Markdown

Afficher le cours

Instructions

  • Within the <style> and </style> boundaries, above the body section, add sections for the #TOC and #header.
  • In the curly braces for #TOC, add #708090 for the text color, Calibri for the font, 16px for the font-size, and #708090 for the border-color.
  • In the curly braces for #header, add #F08080 for the text color, #F5F5F5 for the background, opacity of 0.6, Calibri for the font, and 20px for the font-size.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

{"investment_report.Rmd":"---\ntitle: \"Investment Report for Projects in `r params$country`\"\noutput: \n  html_document:\n    toc: true\n    toc_float: true\ndate: \"`r format(Sys.time(), '%d %B %Y')`\"\nparams:\n  country: Brazil\n  year_start: 2017-07-01\n  year_end: 2018-06-30\n  fy: 2018\n---\n\n\n\n```{r setup, include = FALSE}\nknitr::opts_chunk$set(fig.align = 'center', echo = TRUE)\n```\n\n```{r data, include = FALSE}\nlibrary(readr)\nlibrary(dplyr)\nlibrary(ggplot2)\n\ninvestment_annual_summary <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/d0251f26117bbcf0ea96ac276555b9003f4f7372/investment_annual_summary.csv\")\ninvestment_services_projects <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/bcb2e39ecbe521f4b414a21e35f7b8b5c50aec64/investment_services_projects.csv\")\n```\n\n\n## Datasets \n\n### Investment Annual Summary\nThe `investment_annual_summary` dataset provides a summary of the dollars in millions provided to each region for each fiscal year, from 2012 to 2018.\n```{r investment-annual-summary}\nggplot(investment_annual_summary, aes(x = fiscal_year, y = dollars_in_millions, color = region)) +\n  geom_line() +\n  labs(\n    title = \"Investment Annual Summary\",\n    x = \"Fiscal Year\",\n    y = \"Dollars in Millions\"\n  )\n```\n\n### Investment Projects in `r params$country`\nThe `investment_services_projects` dataset provides information about each investment project from 2012 to 2018. Information listed includes the project name, company name, sector, project status, and investment amounts. Projects that do not have an associated investment amount are excluded from the plot.\n\n```{r country-investment-projects}\ncountry_investment_projects <- investment_services_projects %>%\n  filter(country == params$country) \n\nggplot(country_investment_projects, aes(x = date_disclosed, y = total_investment, color = status)) +\n  geom_point() +\n  labs(\n    title = \"Investment Services Projects\",\n    x = \"Date Disclosed\",\n    y = \"Total IFC Investment in Dollars in Millions\"\n  )\n```\n\n### Investment Projects in `r params$country` in `r params$fy`\nThe `investment_services_projects` dataset was filtered below to focus on information about each investment project from the `r params$fy` fiscal year, and is referred to as `country_annual_investment_projects`. Projects that do not have an associated investment amount are excluded from the plot.\n```{r country-annual-investment-projects}\ncountry_annual_investment_projects <- investment_services_projects %>%\n  filter(country == params$country,\n         date_disclosed >= params$year_start,\n         date_disclosed <= params$year_end) \n\nggplot(country_annual_investment_projects, aes(x = date_disclosed, y = total_investment, color = status)) +\n  geom_point() +\n  labs(\n    title = \"Investment Services Projects\",\n    x = \"Date Disclosed\",\n    y = \"Total IFC Investment in Dollars in Millions\"\n  ) \n```\n\n\n"}
Modifier et exécuter le code