Ajouter un paramètre au rapport
Dans cet exercice, vous allez ajouter un paramètre country au rapport et modifier le code existant afin de pouvoir créer de nouveaux rapports sur les projets d’investissement pour n’importe quel pays présent dans les données investment_services_projects.
Cet exercice fait partie du cours
Créer des rapports avec R Markdown
Instructions
- Sous le champ
datedans l’en-tête YAML, ajoutez une section pour les paramètres avecparams, ajoutez un paramètrecountry, et spécifiezBrazilcomme pays dans le paramètrecountry. - Passez en revue les
filter()contenant"Brazil"dans tout le document et remplacez-les par une référence au paramètrecountry. - Dans le bloc de code
brazil-investment-projects, renommez le bloc encountry-investment-projectset renommez l’objetbrazil_investment_projectsencountry_investment_projects. - Dans le bloc de code
brazil-investment-projects-2018, renommez le bloc encountry-investment-projects-2018et renommez l’objetbrazil_investment_projects_2018ainsi que toutes ses occurrences dans le texte encountry_investment_projects_2018. - Supprimez "in Brazil" des titres des graphiques dans le rapport.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
{"investment_report.Rmd":"---\ntitle: \"Investment Report\"\noutput: \n html_document:\n toc: true\n toc_float: true\ndate: \"`r format(Sys.time(), '%d %B %Y')`\"\n---\n\n```{r setup, include = FALSE}\nknitr::opts_chunk$set(fig.align = 'center', echo = TRUE)\n```\n\n```{r data, include = FALSE}\nlibrary(readr)\nlibrary(dplyr)\nlibrary(ggplot2)\n\ninvestment_annual_summary <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/d0251f26117bbcf0ea96ac276555b9003f4f7372/investment_annual_summary.csv\")\ninvestment_services_projects <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/bcb2e39ecbe521f4b414a21e35f7b8b5c50aec64/investment_services_projects.csv\")\n```\n\n## Datasets \n\n### Investment Annual Summary\nThe `investment_annual_summary` dataset provides a summary of the dollars in millions provided to each region for each fiscal year, from 2012 to 2018.\n```{r investment-annual-summary}\nggplot(investment_annual_summary, aes(x = fiscal_year, y = dollars_in_millions, color = region)) +\n geom_line() +\n labs(\n title = \"Investment Annual Summary\",\n x = \"Fiscal Year\",\n y = \"Dollars in Millions\"\n )\n```\n\n### Investment Projects in Brazil\nThe `investment_services_projects` dataset provides information about each investment project from 2012 to 2018. Information listed includes the project name, company name, sector, project status, and investment amounts. Projects that do not have an associated investment amount are excluded from the plot.\n\n```{r brazil-investment-projects}\nbrazil_investment_projects <- investment_services_projects %>%\n filter(country == \"Brazil\") \n\nggplot(brazil_investment_projects, aes(x = date_disclosed, y = total_investment, color = status)) +\n geom_point() +\n labs(\n title = \"Investment Services Projects in Brazil\",\n x = \"Date Disclosed\",\n y = \"Total IFC Investment in Dollars in Millions\"\n )\n```\n\n### Investment Projects in Brazil in 2018\nThe `investment_services_projects` dataset was filtered below to focus on information about each investment project from the 2018 fiscal year, and is referred to as `brazil_investment_projects_2018`. Projects that do not have an associated investment amount are excluded from the plot.\n\n```{r brazil-investment-projects-2018}\nbrazil_investment_projects_2018 <- investment_services_projects %>%\n filter(country == \"Brazil\",\n date_disclosed >= \"2017-07-01\",\n date_disclosed <= \"2018-06-30\") \n\nggplot(brazil_investment_projects_2018, aes(x = date_disclosed, y = total_investment, color = status)) +\n geom_point() +\n labs(\n title = \"Investment Services Projects in Brazil in 2018\",\n x = \"Date Disclosed\",\n y = \"Total IFC Investment in Dollars in Millions\"\n ) \n```\n\n\n"}