Setting up conversion indexes
Now that you've determined that language is, in fact, the issue with House Ads conversion, stakeholders need to know how many subscribers they lost as a result of this bug.
In this exercise, you will index non-English language conversion rates against English conversion rates in the time period before the language bug arose.
Cet exercice fait partie du cours
Analyzing Marketing Campaigns with pandas
Instructions
- Create a new DataFrame,
house_ads_bug
, that contains only the rows fromhouse_ads
with'date_served'
prior to'2018-01-11'
. - Use your
conversion_rate()
function on thehouse_ads_bug
DataFrame and the'language_displayed'
column. - Using the appropriate row, divide the
Spanish
,Arabic
andGerman
columns oflang_conv
by theEnglish
column.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Calculate pre-error conversion rate
house_ads_bug = ____[____['____'] < '____']
lang_conv = ____
# Index other language conversion rate against English
spanish_index = ____/____
arabic_index = ____/____
german_index = ____/____
print("Spanish index:", spanish_index)
print("Arabic index:", arabic_index)
print("German index:", german_index)