ComenzarEmpieza gratis

Calculating metrics from the confusion matrix

The confusion matrix of a binary classification model lists the number of correct and incorrect predictions obtained on the test dataset and is useful for evaluating the performance of your model.

Suppose you have trained a classification model that predicts whether customers will cancel their service at a telecommunications company and obtained the following confusion matrix on your test dataset. Here yes represents the positive class, while no represents the negative class.

Confusion matrix with 30 true positives, 10 false positives, 40 true negatives, and 20 false negatives

Choose the true statement from the options below.

Este ejercicio forma parte del curso

Modeling with tidymodels in R

Ver curso

Ejercicio interactivo práctico

Pon en práctica la teoría con uno de nuestros ejercicios interactivos

Empezar ejercicio