RNA-Seq DE workflow summary
NOTE: It may take a bit longer to load this exercise.
Let's run through the DESeq2
workflow using the full dataset with both wildtype and smoc2 overexpression samples included. We have loaded the DESeq2
and dplyr
libraries and read in the metadata file, all_metadata
and the raw counts file, all_rawcounts
for you.
Diese Übung ist Teil des Kurses
RNA-Seq with Bioconductor in R
Anleitung zur Übung
- Check that the samples are in the same order in both
all_rawcounts
andall_metadata
using therownames()
,colnames()
,all()
, and%in%
operator. - Create the DESeq2 object using the appropriate design, testing for the effect of
condition
while controlling forgenotype
. - Create the DESeq2 object using the appropriate design, controlling for
genotype
andcondition
individually, but test forgenotype:condition
.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Check that all of the samples are in the same order in the metadata and count data
all(___(___) %in% ___(___))
# DESeq object to test for the effect of fibrosis regardless of genotype
dds_all <- DESeqDataSetFromMatrix(countData = ___,
colData = ___,
design = ___)
# DESeq object to test for the effect of genotype on the effect of fibrosis
dds_complex <- DESeqDataSetFromMatrix(countData = ___,
___,
___)