LoslegenKostenlos loslegen

Model predictions

You're ready to use your model to predict values based on the test dataset, and inspect the results!

All necessary modules have been imported and the data is available as X_train, y_train, and X_test. Don't hesitate to refer to the slides if you don't remember how to initialize a Pipeline.

Diese Übung ist Teil des Kurses

Analyzing IoT Data in Python

Kurs anzeigen

Anleitung zur Übung

  • Create a Pipeline as before, using a StandardScaler and a LogisticRegression, and name the steps "scale" and "logreg" respectively.
  • Fit the Pipeline to X_train and y_train.
  • Predict classes for X_test and store the result as predictions.
  • Print the resulting array.

Interaktive Übung

Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.

# Create Pipeline
pl = Pipeline([
        (____, ____),
  		 ____
    ])

# Fit the pipeline
____.____(____, ____)

# Predict classes
____ = ____.____(____)

# Print results
print(____)
Code bearbeiten und ausführen