Model predictions
You're ready to use your model to predict values based on the test dataset, and inspect the results!
All necessary modules have been imported and the data is available as X_train
, y_train
, and X_test
. Don't hesitate to refer to the slides if you don't remember how to initialize a Pipeline
.
Diese Übung ist Teil des Kurses
Analyzing IoT Data in Python
Anleitung zur Übung
- Create a Pipeline as before, using a
StandardScaler
and aLogisticRegression
, and name the steps"scale"
and"logreg"
respectively. - Fit the Pipeline to
X_train
andy_train
. - Predict classes for
X_test
and store the result aspredictions
. - Print the resulting array.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Create Pipeline
pl = Pipeline([
(____, ____),
____
])
# Fit the pipeline
____.____(____, ____)
# Predict classes
____ = ____.____(____)
# Print results
print(____)