LoslegenKostenlos loslegen

Store Pipeline

You'll now create the Pipeline again, but directly, skipping the step of initializing the StandardScaler and LogisticRegression as a variable. Instead, you will do the initialization as part of the Pipeline creation.

You'll then store the model for further use.

The data is available as X_train, with the labels as y_train.

StandardScaler, LogisticRegression and Pipeline have been imported for you.

Diese Übung ist Teil des Kurses

Analyzing IoT Data in Python

Kurs anzeigen

Interaktive Übung

Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.

# Create Pipeline
pl = Pipeline([
        ("scale", ____),
        ("logreg", ____)
    ])

# Fit the pipeline
____.____(____, ____)
Code bearbeiten und ausführen