Linear interpolation
For continuous and numeric data – where the values can fall anywhere within a range of values – linear interpolation is often the best option for imputation. Data such as temperature, elevation, and per capita income are examples where linear interpolation could be used.
In this exercise, you will determine the number of missing values in the maunaloa_missing
time series and use linear interpolation to impute these values.
maunaloa_missing
, zoo
, and ggplot2
are available to you.
Este exercício faz parte do curso
Manipulating Time Series Data in R
Instruções do exercício
Determine the count of observations from
maunaloa_missing
that areNA
.Use linear interpolation to fill in the missing values in
maunaloa_missing
; assign this asmaunaloa_linear
.Generate a
ggplot
ofmaunaloa_linear
, with a red-colored line.
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
# Count the number of missing values
___
# Fill in values with linear approximation
___
# Generate a full ggplot of maunaloa_linear
ggplot(___,
aes(___)) +
scale_y_continuous() +
___