Identifying potential confounds
Once measures have been extracted, double-check for dependencies within your data. This is especially true if any image parameters (sampling rate, field of view) might differ between subjects, or you pull multiple measures from a single image.
For the final exercises, we have combined demographic and brain volume measures into a pandas DataFrame (df).
First, you will explore the table and available variables. Then, you will check for correlations between the data.
Este exercício faz parte do curso
Biomedical Image Analysis in Python
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
# Print random sample of rows
print(____)