KNN for the first time
You will practice KNN
for the first time on a version of the Ansur Body Measurements dataset for females. The female version also contains 95 columns but only 1.9k observations.
The dataset has been loaded as females
into the environment.
Este exercício faz parte do curso
Anomaly Detection in Python
Instruções do exercício
- Import the
KNN
estimator from the relevantpyod
module. - Instantiate a
KNN()
estimator with 0.5% contamination and 20 neighbors asknn
. - Create a boolean index named
is_outlier
that returnsTrue
when thelabels_
ofknn
return 1. - Isolate the outliers from
females
usingis_outlier
intooutliers
.
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
# Import KNN from the relevant pyod module
from pyod.____ import ____
# Instantiate KNN and fit to females
knn = KNN(____, ____, n_jobs=-1)
knn.____
# Create a boolean index that checks for outliers
is_outlier = ____
# Isolate the outliers
outliers = ____
print(len(outliers))