LOF for the first time
LOF differs from KNN only in the internal algorithm and the lack of the method parameter. Practice detecting outliers with it using contamination filtering on the scaled version of females dataset from previous exercises.
The dataset has been loaded as females_transformed.
Este exercício faz parte do curso
Anomaly Detection in Python
Instruções do exercício
- Import the
LOFestimator from the relevantpyodmodule. - Instantiate an
LOF()with 0.3% contamination, 20 neighbors andn_jobsset to -1. - Create a boolean index that returns
Truevalues when thelabels_returned fromlofare equal to 1. - Isolate the outliers from
females_transformedusingis_outlier.
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
# Import LOF from its relevant module
from pyod.____ import ____
# Instantiate LOF and fit to females_transformed
lof = ____
lof.____
# Create a boolean index that checks for outliers
is_outlier = ____
# Isolate the outliers
outliers = ____
print(len(outliers))