Aan de slagGa gratis aan de slag

Don't drop the stack

It's almost time to go home, but first, you need to finish your last task. You have a small dataset containing the total number of calls made by customers.

To perform your analysis, you need to reshape your churn data by stacking different levels. You know this process will generate missing data. You want to check if it is worth keeping the rows that contain all missing values, or if it's better to drop that information.

The churn DataFrame is available for you.

Deze oefening maakt deel uit van de cursus

Reshaping Data with pandas

Cursus bekijken

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Stack the level type from churn
churn_stack = churn.____(____=____)

# Fill the resulting missing values with zero 
churn_fill = churn_stack.____(____)

# Print churn_fill
print(churn_fill)
Code bewerken en uitvoeren