Aan de slagGa gratis aan de slag

Z-score standardization

In the last exercise, you calculated the Z-score to address outliers. In a machine learning interview, another question might be where else Z-scores are used. They are often used for scaling your data prior to creating a model.

In this exercise you'll use a function from sklearn.preprocessing that was introduced in the video lesson to standardize the numeric feature columns in the loan_data dataset. Recall that this scales the data so that it has a mean of 0 and standard deviation of 1.

The sklearn.preprocessing module has already been imported for you.

Pipeline snapshot:

Machine learning pipeline

Deze oefening maakt deel uit van de cursus

Practicing Machine Learning Interview Questions in Python

Cursus bekijken

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Subset features
numeric_cols = ____.____(include=[____.____])
categoric_cols = ____.____(include=[____])
Code bewerken en uitvoeren