Calculating probability contours using qmvnorm
The inverse problem to the calculation of cumulative probability is as follows: for a given a probability \(p\) calculate the contour that contains \(p\) proportion of the total volume of the density. This contour is the same as the \(p^{th}\) quantile of the distribution. The qmvnorm() function provides the tools to perform the above calculations.
Deze oefening maakt deel uit van de cursus
Multivariate Probability Distributions in R
Oefeninstructies
- Compute the contour for a standard bivariate normal which contains probability \(p=0.9\).
- Calculate the contour for a bivariate normal with mean
mu.simand variance-covariance matrixsigma.simwhich contains probability \(p=0.95\).
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Probability contours for a standard bivariate normal
qmvnorm(___, tail = "both", sigma = diag(2))
# Probability contours for a bivariate normal