Compute benchmark returns
In this exercise, we will create a benchmark to evaluate the performance of the optimization models in later exercises. An equal weight benchmark is a simple weighting scheme to construct the benchmark portfolio. The intuition of an equal weight approach is that there is no preference for any given asset. We are setting this up to answer the question, "Can optimization outperform a simple weighting scheme to construct a portfolio?"
Deze oefening maakt deel uit van de cursus
Intermediate Portfolio Analysis in R
Oefeninstructies
- Load the
PortfolioAnalyticspackage. - Load the edhec dataset.
- Assign the edhec dataset to a variable named
asset_returns. - Create a vector of equal weights assigned to a variable named
equal_weights. - Compute an equal weight benchmark, rebalanced quarterly, of
asset_returns. - Plot the benchmark returns.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Load the package
# Load the data
# Assign the data to a variable
# Create a vector of equal weights
equal_weights <- rep(1 / ncol(___), ncol(___))
# Compute the benchmark returns
r_benchmark <- Return.portfolio(R = ___, weights = ___, rebalance_on = ___)
colnames(r_benchmark) <- "benchmark"
# Plot the benchmark returns