Aan de slagGa gratis aan de slag

Compute predictions

Often, in practice, we are interested in using the fitted logistic regression to estimate the probabilities and construct confidence intervals for these estimates. Using the wells dataset and the model 'switch ~ arsenic' let's assume you have new observations wells_test which were not part of the training sample and you wish to predict the probability of switching to the nearest safe well.

You will do this with the help of the .predict() method.

Note that .predict() takes in several arguments:

  • exog - new observations (test dataset)
  • transform = True - passes the formula of the fit y ~ x to the data.

If exog is not defined the probabilities are computed for the training dataset.

Model wells_fit and datasets wells and wells_test are preloaded in the workspace.

Deze oefening maakt deel uit van de cursus

Generalized Linear Models in Python

Cursus bekijken

Oefeninstructies

  • Using the fitted model wells_fit, compute prediction on test data wells_test and save as prediction.
  • Add prediction to the existing data frame wells_test and name the column prediction.
  • Using print() display the first 5 rows of wells_test with columns switch, arsenic and prediction. Use pandas function head() to view only the first 5 rows.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Compute predictions for the test sample wells_test and save as prediction
prediction = ____.predict(exog = ____)

# Add prediction to the existing data frame wells_test and assign column name prediction
____[____] = ____

# Examine the first 5 computed predictions
print(____[[____, ____, ____]].head())
Code bewerken en uitvoeren