MulaiMulai sekarang secara gratis

Finding Redundancies

One of the important things that principal component analysis can do is shrink redundancy in your dataset. In its simplest manifestation, redundancy occurs when two variables are correlated.

The Pearson correlation coefficient is a number between -1 and 1. Coefficients near zero indicate two variables are linearly independent, while coefficients near -1 or 1 indicate that two variables are linearly related.

The dataset combine has been loaded for you.

Latihan ini adalah bagian dari kursus

Linear Algebra for Data Science in R

Lihat Kursus

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

# Print the first 6 observations of the dataset
___
Edit dan Jalankan Kode