MulaiMulai sekarang secara gratis

Performing grouped summaries of missingness

Now that you can create nabular data, let's use it to explore the data. Let's calculate summary statistics based on the missingness of another variable.

To do this we are going to use the following steps:

  • First, bind_shadow() turns the data into nabular data.

  • Next, perform some summaries on the data using group_by() and summarize() to calculate the mean and standard deviation, using the mean() and sd() functions.

Latihan ini adalah bagian dari kursus

Dealing With Missing Data in R

Lihat Kursus

Petunjuk latihan

  • For the oceanbuoys dataset:

  • bind_shadow(), then group_by() for the missingness of humidity (humidity_NA) and calculate the means and standard deviations for wind east west (wind_ew) using summarize() from dplyr.

  • Repeat this, but calculating summaries for wind north south (wind_ns).

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

# `bind_shadow()` and `group_by()` humidity missingness (`humidity_NA`)
oceanbuoys %>%
  ___() %>%
  group_by(___) %>% 
  summarize(wind_ew_mean = mean(___), # calculate mean of wind_ew
            wind_ew_sd = ___)) # calculate standard deviation of wind_ew
  
# Repeat this, but calculating summaries for wind north south (`wind_ns`).
___ %>%
  ___ %>%
  group_by(___) %>%
  summarize(___ = ___(___),
            ___ = ___(___))
Edit dan Jalankan Kode