CommencerCommencer gratuitement

Calculating metrics from the confusion matrix

The confusion matrix of a binary classification model lists the number of correct and incorrect predictions obtained on the test dataset and is useful for evaluating the performance of your model.

Suppose you have trained a classification model that predicts whether customers will cancel their service at a telecommunications company and obtained the following confusion matrix on your test dataset. Here yes represents the positive class, while no represents the negative class.

Confusion matrix with 30 true positives, 10 false positives, 40 true negatives, and 20 false negatives

Choose the true statement from the options below.

Cet exercice fait partie du cours

Modeling with tidymodels in R

Afficher le cours

Exercice interactif pratique

Passez de la théorie à la pratique avec l’un de nos exercices interactifs

Commencer l’exercice