Manage skewness
We've loaded the same dataset named data
. Now your goal will be to remove skewness from var2
and var3
as they had a non-symmetric distribution as you've seen in the previous exercise plot. You will visualize them to make sure the problem is solved!
Libraries pandas
, numpy
, seaborn
and matplotlib.pyplot
have been loaded as pd
, np
, sns
and plt
respectively. Feel free to explore the dataset in the console.
Cet exercice fait partie du cours
Customer Segmentation in Python
Instructions
- Apply a logarithmic transformation to
var2
and store it as new variablevar2_log
. - Apply a logarithmic transformation to
var3
and store it as new variablevar3_log
. - Plot the distribution of
var2_log
. - Plot the distribution of
var3_log
.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Apply log transformation to var2
data['____'] = np.____(data['____'])
# Apply log transformation to var3
data['____'] = ____.____(____)
# Create a subplot of the distribution of var2_log
plt.____(2, 1, 1); ____.____(data['____'])
# Create a subplot of the distribution of var3_log
plt.____(2, 1, 2); ____.____(data['____'])
# Show the plot
plt.show()