CommencerCommencer gratuitement

Plot sum of squared errors

Now you will plot the sum of squared errors for each value of k and identify if there is an elbow. This will guide you towards the recommended number of clusters to use.

The sum of squared errors is loaded as a dictionary called sse from the previous exercise. matplotlib.pyplot was loaded as plt, and seaborn as sns.

You can explore the dictionary in the console.

Cet exercice fait partie du cours

Customer Segmentation in Python

Afficher le cours

Instructions

  • Add the plot title "The Elbow Method".
  • Add the X-axis label "k".
  • Add the Y-axis label "SSE".
  • Plot SSE values for each k stored as keys in the dictionary.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Add the plot title "The Elbow Method"
plt.____('The Elbow Method')

# Add X-axis label "k"
plt.____('____')

# Add Y-axis label "SSE"
plt.____('____')

# Plot SSE values for each key in the dictionary
sns.____(x=list(sse.____()), y=list(sse.____()))
plt.show()
Modifier et exécuter le code