Plot sum of squared errors
Now you will plot the sum of squared errors for each value of k
and identify if there is an elbow. This will guide you towards the recommended number of clusters to use.
The sum of squared errors is loaded as a dictionary called sse
from the previous exercise. matplotlib.pyplot
was loaded as plt
, and seaborn
as sns
.
You can explore the dictionary in the console.
Cet exercice fait partie du cours
Customer Segmentation in Python
Instructions
- Add the plot title "The Elbow Method".
- Add the X-axis label "k".
- Add the Y-axis label "SSE".
- Plot SSE values for each
k
stored as keys in the dictionary.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Add the plot title "The Elbow Method"
plt.____('The Elbow Method')
# Add X-axis label "k"
plt.____('____')
# Add Y-axis label "SSE"
plt.____('____')
# Plot SSE values for each key in the dictionary
sns.____(x=list(sse.____()), y=list(sse.____()))
plt.show()