Pre-process data
First step in the segmentation process is to pre-process the data. You will apply log transformation, and then normalize the data to prepare it for clustering.
We have loaded the dataset with RFMT values as datamart_rfmt
. Also, the pandas
library is loaded as pd
, and numpy
as np
.
Please feel free to explore the expanded RFMT dataset in the console.
Cet exercice fait partie du cours
Customer Segmentation in Python
Instructions
- Import StandardScaler, initialize it, ad store as
scaler
. - Apply log transformation to the raw RFMT data.
- Initialize the scaler and fit it on the log-transformed data.
- Transform and store the scaled data as
datamart_rfmt_normalized
.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Import StandardScaler
from ____.____ import ____
# Apply log transformation
datamart_rfmt_log = ____.____(____)
# Initialize StandardScaler and fit it
scaler = ____(); ____.fit(____)
# Transform and store the scaled data as datamart_rfmt_normalized
datamart_rfmt_normalized = ____.____(____)