ComenzarEmpieza gratis

Replace missing values

In the last exercise, you noticed that for six observations, the value of RelationalNeighborSecond was missing. In this exercise, you will replace those missing values with 0.

Este ejercicio forma parte del curso

Predictive Analytics using Networked Data in R

Ver curso

Instrucciones del ejercicio

  • Use summary() to inspect the RelationalNeighborSecond feature.
  • Find the indices of the observations that are missing using which() and assign to the variable toReplace.
  • Use the toReplace vector to replace the missing values instudentnetworkdata$RelationalNeighborSecond with a zero.
  • Inspect RelationalNeighborSecond again to make sure there are no longer any missing value.

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

# Inspect the feature
___(studentnetworkdata$RelationalNeighborSecond)

# Find the indices of the missing values
toReplace <- ___(is.na(studentnetworkdata$___))

# Replace the missing values with 0
studentnetworkdata$RelationalNeighborSecond[___] <- ___

# Inspect the feature again
___(___$___)
Editar y ejecutar código