ComenzarEmpieza gratis

Missing Values

You can check if a dataset has missing values per column using the apply() function.

  • The first argument of apply() is the dataframe you are inspecting, in this case, studentnetworkdata.
  • The second argument indicates whether operations should be performed row-wise (1) or column-wise (2).
  • The third argument is the function applied to each row or column. You specify it by writing function(x) ... where ... indicates the operation.
    You want to count the number of missing values in each column. Use sum(is.na(x)) to find all the missing values and count them.

How many columns in studentnetworkdata have missing values?

Este ejercicio forma parte del curso

Predictive Analytics using Networked Data in R

Ver curso

Ejercicio interactivo práctico

Pon en práctica la teoría con uno de nuestros ejercicios interactivos

Empezar ejercicio