Evaluación del ajuste de la distribución para la variable ldl
En este ejercicio, te centrarás en una variable del conjunto de datos sobre diabetes dia: el suero sanguíneo ldl.  Determinarás si la distribución normal sigue siendo una buena opción para ldl basándote en la información adicional proporcionada por una prueba de Kolmogorov-Smirnov.
Se ha cargado el DataFrame dia.  También se han importado las siguientes bibliotecas: pandas como pd, numpy como np, y scipy.stats como st.
Este ejercicio forma parte del curso
Simulaciones Montecarlo en Python
Instrucciones del ejercicio
- Define una lista llamada 
list_of_distsque contenga tus distribuciones candidatas: Laplace, normal y exponencial (en ese orden); utiliza los nombres correctos descipy.stats. - Dentro del bucle, ajusta los datos con la distribución de probabilidad correspondiente, guardando como 
param. - Realiza una prueba de Kolmogorov-Smirnov para evaluar la bondad de ajuste, guardando los resultados como 
result. 
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
# List candidate distributions to evaluate
list_of_dists = [____]
for i in list_of_dists:
    dist = getattr(st, i)
    # Fit the data to the probability distribution
    param = dist.____
    # Perform the ks test to evaluate goodness-of-fit
    result = ____
    print(result)