Summarize the Multi-Factor Model
You have now created a two-factor model of the reading comprehension and speeded addition factors. Is that better than a one-factor model? Use the cfa() and summary() functions on your new two-factor model of the HolzingerSwineford1939 dataset to show the fit indices.
Diese Übung ist Teil des Kurses
Structural Equation Modeling with lavaan in R
Anleitung zur Übung
- Save your model fit as
twofactor.fitusing thecfa()function. - Use the
summary()function to view the fitted model. - Compare the fit indices from the one-factor model to the updated model.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Previous one-factor model output
summary(text.fit, standardized = TRUE, fit.measures = TRUE)
# Two-factor model specification
twofactor.model <- 'text =~ x4 + x5 + x6
speed =~ x7 + x8 + x9'
# Use cfa() to analyze the model and include data argument
# Use summary() to view the fitted model