LoslegenKostenlos loslegen

Ordering MLflow steps

In order to succeed in the modeling and evaluation phases of the ML lifecycle, you need to ensure that you keep an organized workspace, recording a history of various experiments to ensure cross-run comparability and reproducibility. MLflow provides a helpful, comprehensive platform to manage experiments robustly. In the video, you learned the various steps and commands used to create, start, log to, and retrieve runs. In this exercise, you will order the MLflow commands generally used in experiment management.

Diese Übung ist Teil des Kurses

End-to-End Machine Learning

Kurs anzeigen

Interaktive Übung

In dieser interaktiven Übung kannst du die Theorie in die Praxis umsetzen.

Übung starten