Approximate Convexity für eine Anleihe berechnen
Erinnere dich aus dem Video: Wir können die Schätzung des Anleihekurses verbessern, indem wir dem Durationseffekt einen Konvexitätsterm hinzufügen. Der Konvexitätsterm erfasst, wie stark die Preis/YTM-Kurve der Anleihe gekrümmt ist.
In dieser Übung berechnest du die approximate Convexity für eine Anleihe mit einem Nennwert von 100 $, 10 % Coupon, 20 Jahren Restlaufzeit und 10 % Yield to Maturity, wenn du eine Renditeänderung von 1 % erwartest, und fügst diese anschließend zum Durationseffekt hinzu. Zur Erinnerung, die Formel für die approximate Convexity lautet
$$(P(up) + P(down) - 2 * P) / (P * \Delta y ^ 2)$$
wobei \(P\) der Preis der Anleihe ist, \(P(up)\) der Preis der Anleihe bei steigenden Renditen, \(P(down)\) der Preis der Anleihe bei fallenden Renditen und \(\Delta y\) die erwartete Renditeänderung.
Die Objekte px, px_up und px_down aus der vorherigen Übung sind in deinem Workspace bereits geladen.
Diese Übung ist Teil des Kurses
Anleihebewertung und -analyse in R
Anleitung zur Übung
- Berechne die approximate Convexity, indem du die Objekte
px,px_upundpx_downin die oben angegebene Formel einsetzt. Du musst außerdem einen passenden Wert fürdyangeben.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Calculate approximate convexity
convexity <- (___ + ___ - 2 * ___) / (___ * (___)^2)
convexity